洲本五色線上加茂バイパスの整備における中層混合処理工

1. はじめに

洲本五色線は、淡路島のほぼ中央に位置し、洲本市街と旧五色町を結ぶ延長約 14km の 幹線道路である。現道部は、幅員が狭小で線形も不良な箇所があり、また歩道も未整備の 箇所があることから、円滑な交通と通学路の安全確保、緊急輸送道路としての機能強化な どを目的にバイパス整備が行われ、現在、上加茂バイパスとして供用されている¹⁾。

本節では、上加茂バイパス整備区間の軟弱地盤対策として実施された、中層混合処理工 法を紹介する。

現道部

幅員狭小・歩道未整備

施工中

国土地理院 Web に加筆

図1 事業概要 1)

2. 地盤改良の仕様

原地盤の状況を把握するため、標準貫入試験(写 真1) やSWS 試験(写真2) が実施された。また、 地盤表層部を対象とし、盛土計画部の軟弱層が薄く、 主に斜面地部において標準貫入試験を補完する目的 で、簡易動的コーン貫入試験が実施された。

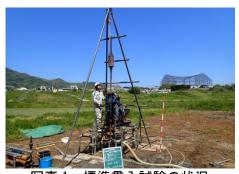


写真 1 標準貫入試験の状況

地盤調査の結果、N 値が低い軟弱地盤が分布していることが確認されたため、地盤改良が計画され、中層混合処理工法が適用された。施工に先立って、ボーリングにより採取された試料(写真3)により室内配合試験が実施され、固化材添加量等の仕様が決定された。

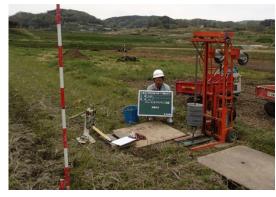


写真 2 SWS 試験の状況

写真3 試料の採取状況

地盤改良の仕様を表1に示す。

表1 地盤改良の仕様

項目		仕 様	
		盛土部	構造物基礎部
工法		中層混合処理工法(スラリー揺動撹拌工法)	
改良土量	(m ³)	14,580	885
平均改良深度	(m)	6.4	4.3
改良率	(%)	50(千鳥配置)	100
設計基準強度 quck	(kN/m ²)	350	540
室内目標強度 $\overline{q_{ul}}$	(kN/m^2)	1050	1620
固化材の種類		特殊土用固化材	
固化材添加量	(kg/m³)	128	120
水セメント比	(%)	130	140
添加方法		スラリー添加	

また、**図 2** に示すように、ブロック形状に区割りされた改良形式であり、盛土部は 683 ブロック、構造物基礎部は 22 ブロックに区割りして施工が行われた。

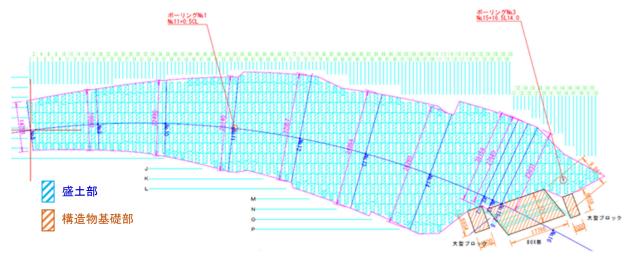
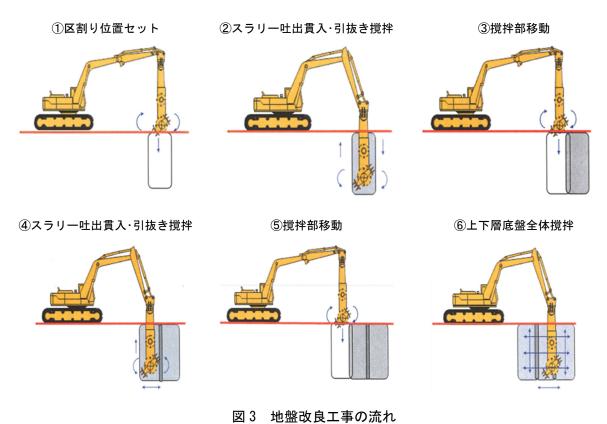



図2 地盤改良の配置平面図

3. 地盤改良工事

本施工は、バックホウタイプのベースマシンの先端に取り付けた特殊な撹拌翼よりスラ リー状の固化材を注入しながら、固化材と原位置土を強制的に混合撹拌し、安定した改良 体を形成するものである。

地盤改良工事の流れを図3に、地盤改良工事の状況を写真4に示す。

[施工位置の区割り]

[混合撹拌]

[出来形確認]

写真 4 地盤改良工事の状況

4. 品質管理試験

施工後の管理として、モールドコアおよびボーリングコア (**写真 5**) による供試体を採取し、改良体の一軸圧縮試験が行われた。いずれも設計基準強度を満足しており、適切な施工が実施されていたことが確認できた。

なお、モールドコアは、撹拌翼の先端に装着された専用の試料採取装置により、深度を確認しながら改良土を採取し、モールド(ϕ 5cm×H10cm型枠)へ充填し成型された。

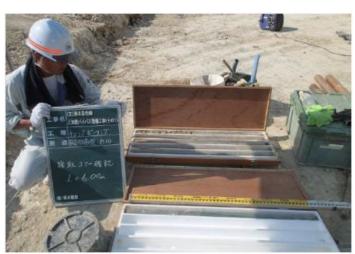


写真 5 ボーリングコアの採取状況

5. おわりに

洲本五色線「上加茂バイパス」の整備によって、走行時間短縮・走行経費減少・交通事 故減少が図られ、地域の交通網の高度化が図られた。また、異常気象時や緊急時の迂回路 としての利用、救急医療へのアクセス機能の向上なども期待される²⁾。

【参考資料】

- 1) 淡路県民局 地域情勢報告 平成 30 年 3 月 26 日: https://web.pref.hyogo.lg.jp/governor/documents/g_kaiken20180326_10.pdf
- 2) 兵庫県県土整備部 土木局道路街路課:新規事業評価調書【道路事業】主要地方道洲本 五色線

https://web.pref.hyogo.lg.jp/ks04/documents/h25s-02-sumotogoshikisen.pdf