6.2. 温度応力の計算

コンクリート舗装の版厚方向の温度分布は、図 6.8 に示すように、平均成分、そり成分、内部 成分に分けることができる。コンクリートは温度変化によって体積が変化し、もしその体積変化 が、自重、路盤、目地によって拘束されると応力が発生する。これがコンクリート舗装の温度応 力である。適切な温度や境界条件を入力すれば、JCA Pave3D は 3 成分の温度応力を計算できる。

例題5

例題 4 のコンクリート舗装において、表 6.3 のようなコンクリート版の温度が計測された。1 時、8 時、14 時の目地縁部における温度応力を計算せよ。

測定点(深さ cm)	-0.5	-14	-27.5
時刻			
2011/07/20 01:00'00	23.9	25.3	26.3
2011/07/20 02:00'00	23.8	25.2	26.2
2011/07/20 03:00'00	23.7	25	26.1
2011/07/20 04:00'00	23.7	24.9	26
2011/07/20 05:00'00	23.8	24.9	25.9
2011/07/20 06:00'00	24.1	24.8	25.8
2011/07/20 07:00'00	24.7	24.9	25.7
2011/07/20 08:00'00	27.2	25.1	25.7
2011/07/20 09:00'00	29.4	25.7	25.7
2011/07/20 10:00'00	38.7	26.7	25.9
2011/07/20 11:00'00	42.5	29.2	26.2
2011/07/20 12:00'00	47.6	31.7	27
2011/07/20 13:00'00	50.9	34.3	28
2011/07/20 14:00'00	52.8	36.8	29.1
2011/07/20 15:00'00	52.5	38.7	30.3
2011/07/20 16:00'00	50	39.9	31.5
2011/07/20 17:00'00	46.5	40.3	32.4
2011/07/20 18:00'00	40.7	39.7	33
2011/07/20 19:00'00	37.5	38.4	33.3
2011/07/20 20:00'00	35	36.9	33.2
2011/07/20 21:00'00	33.3	35.5	32.8
2011/07/20 22:00'00	31.9	34.3	32.3
2011/07/20 23:00'00	30.8	33.2	31.8

表 6.3 コンクリート版で計測された深さ方向の温度分布

14時における温度分布による解析例を示す。

構造モデルを作成するが、舗装構造が例題4と同じであるので例題4で作成したモデルを修正 する。"ex04.msh"を呼び出す。[荷重]ページから[削除]ボタンをクリックして荷重を削除する。図 6.9 のような[Option]ウインドーにおいて再分割の再分割数を0とすると、要素分割が均等になる。 図 6.10 のように、[表層]ページで、密度、線膨張係数、温度分布を入力する。[境界面]ページか ら、水平方向のばね係数を1.0、鉛直方向のばね係数を1,000,000 とし、はがれを考慮するために 鉛直方向の閾値を0.001 とする。すべての入力が終わったら"ex05(.msh)"という名前で保存し、要 素分割、構造解析を実行する。

オプション和		表層 目 境界面 路盤1 路盤2 路盤3 路床 荷重	
表示関係		****	
縮小·拡大率 %	5	11115-17 (266-265-6-30) 💌	
×方向の移動量 (cm)	20	材料定数	
y方向の移動量 (cm)	20	弹性係数 E (MN/m2 30000	
z方向の移動量 (cm)	20	ポアノン比 4 62	
姜素分割開係			
×方向の分割数	20 細分割 20 から 1020 まで 0 分割	型度(SD kg/m3 2400	
y方向の分割数	20 細分割 20 から 420 まで 0 分割	線膨張係数 1/°C 1E-5	表層 目地 現代田 昭盤1 路盤2 路盤3 路床 荷
	表層 路盤1 路盤2 路盤3 路床		付着の程度 付着なし、はがれあり ・
Z方向の分割数	14 12 p p 16	厚さと温度	
その他オブション	C 48-10 710 C 48-10 710	縦 y (cm) [400	材料定数
· Marterodo - A sonde		横 × (cm) 500	×方向のバネ(MN/m3) 1
		厚さ z (cm) 28	v方向のバネ(MN/m3)
要素分割のプログラム	C.¥nishi¥JCI¥構造解析プログラ2 参照		- 方向の()ふ(MN/m3) 10000000
構造解析のプログラム	C.V.nishiVJCIV構造解析プログラ2 参照	深さz1(cm) -0.5 温度T1(°C) 52.8	
回形実示のプログラム	C.VoichX, ICIX構造解析プログラノ 参照	深さz2(cm) -14 温度T2(°C) 36.8	xolelograming com 10
Environ and a set		深さz3(cm) -275 温度T3(°C) 291	y方向のはがれ閾値(cm) 10
	決定		z方向のはがれ闕値(cm) 0001

図 6.9 要素分割の再調整

図 6.10 コンクリート版の温度と境界条件の設定

結果表示によって、図形表示させる。図 6.11 は、[Options]-[Scale]によって変形の倍率を 200 倍とし、[Graph]-[Displacement]によって、そり変形をみたものである。目地縁部における温度応力 分布をリストにするために、[Data]-[List]にて、目地縁部の応力を取り出て保存する。それを表計 算ソフトで分布図にしたものが図 6.12 である。

