

有限要素法による舗装構造解析入門 ~例題による JCA Pave3D の活用法~

ー般社団法人 セメント協会

2015年3月

有限要素法による舗装構造解析入門 ~例題による JCA Pave3D の活用法~

目 次

1.	はじめに	1
2.	プログラムの構成	1
3.	構造解析の流れ	2
4.	要素と節点	3
4.1.	8節点6面体要素(ソリッド要素)	3
4.2.	境界面要素	4
4.3.	はがれの表現	5
4.4.	非線形方程式の解法	5
4.5.	構造モデル	6
5.	アスファルト舗装の解析	7
5.1.	変位とひずみの計算	7
5.2.	わだち掘れ解析	15
5.3.	疲労ひび割れ解析	17
6.	コンクリート舗装の解析	18
6.1.	荷重応力の計算	18
6.2.	温度応力の計算	22
6.3.	疲労度の計算	24
7.	バッチ処理	26
7.1.	入力ファイルの作成	27
7.2.	計算	28
7.3.	出力ファイルの見方	29
7.4.	バッチ処理	29
7.5.	ポストプロセッサ	29
8.	空洞がある場合の解析	30
8.1.	入力ファイルの作成	30
8.2.	バッチ処理による解析の実行	31
8.3.	結果の整理	31

9.	目地有り半たわみ性とポーラスコンクリートのコンポジット舗装	32
9.1.	入力データの作成(テキストデータの作成)	32
9.2.	バッチ処理による解析の実行	35
9.3.	解析結果	35
10.	オーバーレイ層に目地を設けない場合	36
10.1.	入力データの作成	36
10.2.	バッチ処理による解析の実行	37
10.3.	解析結果	37
11.	目地有りコンクリート舗装をアスファルト層でオーバーレイした場合のリフレクション	クラ
	ックの検討	38
11.1.	入力データの作成	39
11.2.	バッチ処理による解析の実行	43

1. はじめに

プログラムパッケージ JCA Pave3D は 3 次元有限要素法(3D FEM)によるコンクリート舗装の構 造解析を行うためのいくつかのプログラム群をまとめたものである。コンクリート舗装だけでな く、アスファルト舗装も扱うことができる。プログラムの本体は 3 次元有限要素法による構造解 析プログラムであり、その他に要素分割を行うプリプロセッサー、計算結果をグラフィカルに表 示するポストプロセッサーおよびこれらのプログラムを統合し、ユーザとの仲立ちをするユーザ ーインタフェースから成る。本書ではこれらのプログラムを用いて、アスファルト舗装、コンク リート舗装の構造解析を行うための方法を、いくつかの具体的な例を用いて説明する。

3D FEM による舗装の構造解析を手軽に実行できるように、本書で紹介するプログラム群が約 10年間にわたって開発されてきた。その時々の研究プロジェクトに応じて改良を重ね、その場そ の場で拡張を繰り返してきたため、多少一貫性に問題があり、他の人が使用するには理解しがた い部分があると思われる。本書では具体的な例題を通じてプログラムの使用法や舗装の構造解析 のノウハウを説明している。

2. プログラムの構成

このプログラムは、表 2.1 のプログラムから構成されている。

プログラム	機能	入力	出力
FEM_3D.EXE	3次元有限要素法による解析を行う	PIN、DWI	OUT, DWO
PRE3D.EXE	FEM3D.EXE のための要素分割を行う。	TXT	PIN
P3D.EXE	解析結果のグラフィック表示を行う。	PIN, OUT	
JCA_Pave3D.EXE	入力データを作成するインターフェース	TXT、MSH	

表 2.1 プログラムの構成

入出力で使用するファイルはすべてテキストファイルであり、その内容は表 2.2 のようである。

表 2.2 使用するファイル群

拡張子	内容
*.TXT	要素分割を行うために必要なデータを格納。
*.PIN	要素分割を行った後の FEM 入力データ。節点座標、材料定数、
	要素と節点との関係などのデータを格納。
*.OUT	FEM 計算結果を格納。節点での変位、応力、ひずみ。
*.DWI	目地のダウエルに関するデータを格納。
*.DWO	目地のダウエルの応答に関する計算結果を格納。
*.MSH	インターフェースで入力した情報を格納。

3. 構造解析の流れ

JCA Pave3Dによる舗装の構造解析は、図 3.1に示す舗装構成が設定されており、以下のような手順で実行する。

- 1) 対象とする舗装の構造を定める。
- 2) 材料定数を決定する。
- 3) JCA_Pave3D(.exe)を起動する。
 - ① コンクリート版(表層)の大きさ、厚さ、材料定数を入力する。
 - 目地の諸量を入力する。
 - ③ 境界層の諸量を入力する。
 - ④ 路盤層の諸量を入力する。
 - ⑤ 路床層の諸量を入力する。
 - ⑥ 荷重の位置、大きさを入力する。
 - ⑦ オプション関係を確認する。
 - データを保存する。
 データファイル*.msh と要素分割ファイル*.txt が作成される。
 - ⑨ PRE3D(.exe)によって*.txt を読み込んで、要素分割を行う。
 FEM 入力データファイル*.pin が作成される。
 - **(D)** FEM_3D(.exe)によって*.pin を読み込んで、構造計算を行う。
 計算結果ファイル*.out が作成される。
 - P3D(.exe)によって*.pin と*.out を読み込んで、結果の表示を行う。
 必要な応答値を求める。

図 3.1 設定された舗装構成

4. 要素と節点

4.1. 8節点6面体要素(ソリッド要素)

本モデルにおいては図 4.1 に示すような8節点6面体要素を採用した。各節点の変位から、要素内の任意の変位は以下のように計算できる。

$$\begin{cases} u \\ v \\ w \end{cases} = \sum_{i=0}^{7} \begin{bmatrix} N_i & 0 & 0 \\ 0 & N_i & 0 \\ 0 & 0 & N_i \end{bmatrix} \begin{cases} u_i \\ v_i \\ w_i \end{cases}$$
ここに、 $u, v, w : \mathcal{E} h \mathcal{E} h \xi, \eta, \zeta$ 方向の変位
$$u_i, v_i, w_i : \mathcal{E} h \mathcal{E} h i$$
節点における ξ, η, ζ 方向の変位
$$N_i = \frac{1}{8} (1 + \xi_i \xi) (1 + \eta_i \eta) (1 + \zeta_i \zeta)$$

*N*_iは形状関数と呼ばれている。この形状関数の形から明らかなように、変位は要素内で1次関数となる。したがって、変位が高次の変化をするときには要素分割に注意しなければならない。 後述するように、要素分割については PRE3D(.exe)を準備しているので、要素の増加によるデータ 作成作業はそれほど煩雑ではない。

図 4.1 節点ソリッド要素

4.2. 境界面要素

コンクリート版と路盤の接着状況や、目地やひび割れの荷重伝達機能を考慮するために、汎用 境界面要素を開発した。図 4.2 に示すような 2 枚の面が接している状態を考える。面 0 と面 1 に おける変位は、ぞれぞれ以下のとおりである。

$$\begin{cases} u \\ v \\ w \end{cases}_{\text{fin}0} = \sum_{i=0}^{3} \begin{bmatrix} N_i & 0 & 0 \\ 0 & N_i & 0 \\ 0 & 0 & N_i \end{bmatrix} \begin{cases} u_i \\ v_i \\ w_i \end{cases}, \quad or \quad \{\delta'_0\} = \sum_{i=0}^{3} [\mathbf{N}_i] \{\delta'_i\} \qquad \text{ If } (2)$$

および、

$$\begin{cases} u \\ v \\ w \end{cases}_{\bar{m}1} = \sum_{i=4}^{7} \begin{bmatrix} N_i & 0 & 0 \\ 0 & N_i & 0 \\ 0 & 0 & N_i \end{bmatrix} \begin{cases} u_i \\ v_i \\ w_i \end{cases}, \quad or \quad \{\delta'_1\} = \sum_{i=4}^{7} [\mathbf{N}_i] \{\delta'_i\}$$
式(3)
ここに、 u', v', w' : 面内の局所座標、x'、y'、z'方向の変位

$$u_i', v_i', w_i'$$
: i節点のx'、y'、z'方向の変位

図 4.2 境界面要素

面0から面1へ、変位差に比例した力が伝達されるとする。すなわち、

この値が大きいほど境界面での荷重伝達能力が高いことを示す。 k'_x, k'_y は面に平行なばねであり、 k'_z は面に垂直なばねである。これらの値は、境界面要素が何をモデル化しているか、およびその荷重伝達能力の度合いによって異なる。式(4)に基づいて、境界面要素の剛性マトリックスを導く。詳細は文献を参照されたい。

4.3. はがれの表現

コンクリート舗装では、コンクリート版と路盤との接着を防ぐために、路盤面では石粉を塗布 する。したがって、コンクリート版と路盤とは分離していると考えられ、温度差によるそり変形 の際に、コンクリート版は路盤から浮き上がる。この現象を考慮するために、ばね定数を以下の ような変形の関数とした。

$$k = \begin{cases} k & \Delta u < 0\\ k \left\{ \cos\left(\frac{\pi \Delta u}{\Delta_0}\right) + 1.0 \right\} / 2 & 0 < \Delta u < \Delta_0\\ 0 & \Delta_0 < \Delta u \end{cases}$$

ばね係数の値を急激に変化させると、数値計算上不都合が生ずるため、遷移領域を設けている。 Δ_0 の値は経験的に 0.001cm 程度としている。

4.4. 非線形方程式の解法

以上より、3DFEM における全体剛性方程式は以下のようになる。

$$\begin{pmatrix} \mathbf{K}_{s} + \mathbf{K}_{j} \end{pmatrix} \cdot \mathbf{d} = \mathbf{f}_{p} + \mathbf{f}_{v} + \mathbf{f}_{t}$$

ここに、 K_s : 6 面体要素の剛性マトリックス

K_j : 境界面要素の剛性マトリックス

d : 節点変位ベクトル

f_{p} : 表面荷重ベクトル

f_{v} : 自重ベクトル

f_{v} : 自重ベクトル

f_{v} : 温度荷重ベクトル。

境界面要素の剛性は変位の関数になるため、式(6)は非線形な方程式となる。そこで、式(6)を Newton-Raphson 法を用いて解く。

(i-1)段階の変位ベクトル**d**ⁱ⁻¹が既知とし、全体剛性方程式の残差

を計算し、次式を解くことによって変位ベクトルの修正項 **Δd**ⁱ⁻¹を計算する。

この修正項を既知の変位ベクトルに加えて再び残差を計算し、残差のノルムが十分小さい値になるまでこのプロセスを繰り返す。

4.5. 構造モデル

JCA Pave3Dの構造モデルは図 4.3のようになる。

- 1) 第1層は有限な広がりを持ったコンクリート版であり、目地やひび割れがある。この層の端 部は自由境界である。この表面に荷重が作用する。
- 2) 第1層と第2層の間には境界面があり、密着(粗)あるいは水平方向にすべる(滑)の2つの状態 を扱うことができる。
- 3) 第2層から第4層までは端部拘束されており、端部に平行な面の変位は可能だが、それ以外 は固定されている。
- 4) 最下層の下面は完全固定である。

図 4.3 基本的な舗装構造モデル

5. アスファルト舗装の解析

5.1. 変位とひずみの計算

舗装の構造解析では荷重や温度の作用による舗装の応答を求める。舗装の応答としては、変位、 ひずみおよび応力である。それらの応答から、わだち掘れ量やひび割れ発生の危険性を判断する のである。

舗装構造を JCA Pave3D によって解析し、その応答を求める場合、以下のステップを経る。

- 解析する領域を決める。解析領域が大きいと要素数が多くなり、解析時間が増えることになる。舗装や路盤は、道路であれば道路構造で限定されているが、地盤の深さに際限はない。 解析領域は荷重の影響がなくなるまでの範囲を考える。
- 2) 舗装各層の材料定数を決める。材料定数としては、弾性係数、ポアソン比、密度、線膨張係数である。その際、密度に値を入力すると、荷重に自重が加わる。荷重による舗装の応答を調べる際には密度は0とする。
- 3) JCA Pave3D では表層と路盤との間に境界面がある。そのばね係数は、アスファルト舗装の場合は接着とし、コンクリート舗装の場合には滑るとする。ただし、その場合のばね係数をどのように与えるかに決まりはなく、接着の場合は1,000,000MN/m³程度、滑る場合には1MN/m³とする。
- 4) 荷重をモデル化する。JCA Pave3D では矩形要素なので、タイヤ荷重をある接地面を矩形の等 分布荷重に置き換えなければならない。またその位置(荷重作用位置の中心)も領域の範囲 で決める。
- 5) 要素分割を決める。JCA Pave3D では各要素内の応力やひずみは一定となるため、ひずみや応 力が急激に変化するような場所は要素は小さいほど計算精度はよくなる。しかしながら、小 さな要素にすると領域の要素数が多くなり、計算時間が増える。JCA Pave3D では計算時間が かなりかかるので、要素数はなるべく少ない方が良い。そこで、ひずみや応力が変化するよ うな荷重周辺のみ小さな要素とし、荷重から離れた場所には粗い要素とするとよい。たとえ ば表層の曲げを表現するためには最低3分割することが必要である。ただし、要素の一辺の 最小値は2.5cm 以下としない方がよい。荷重接地面は最低でも2分割するようにする。
- 6) 以上のデータを入力したら、実際に要素分割を行いソルバーに必要な入力データを生成する。
- 7) 入力データを用いて計算を実行し、その結果をファイルに保存する。
- 8) 出力データから必要な応答を取り出す。
- 9) 計算された応答から、舗装の破損予測を行う。

例題1

図 5.1 に示すようなアスファルト舗装に大型車後輪が作用している。図 5.1 に示す点の変位と ひずみを求め、多層弾性理論の結果と比較せよ。各層の材料定数は**表-3** に示すとおりである。

** */	弹性係数	ポアソンド	層厚
471 474	(MPa)		(mm)
アスファルト混合物	5000	0.35	100
粒状調整砕石	300	0.35	300
土質材料	80	0.35	半無限

表 3.1 例題 1 の舗装の材料定数

図 5.1 例題 1 の舗装構成と荷重

解答例

この例題については以下のように実施する.

(1) 構造モデルの設定

この例題では、図 5.2 および図 5.3 のようにモデル化する。

図 5.2 3DFEM による舗装構造のモデル化(平面図)

図 5.3 3DFEM による舗装構造のモデル化(断面図)

まず、JCA_Pave3D(.exe)を起動する。図 5.4 のような画面が現れる。ここでは、x 方向と y 方向の表層の枚数を入力する。この場合、目地 の無いアスファルト層 1 枚なので、両方とも 1 と入力する。

[決定]ボタンをクリックすると、図 5.5 のような画面が現れる。この画面から基本的なデー タ入力、修正、解析、結果表示を行っていく。

図 5.5 JCA_Pave3D.EXE の入力画

- (2) 層厚、材料定数の設定
- (a) 表層

図 5.6 に示すように、表層はアスファルト混合物と し、弾性係数は 5000MN/m²、ポアソン比は 0.35、厚さ は 10cm とする。荷重に対する応答を知りたいので密 度は0とする。この例題では温度応力は関係ないので、 線膨張係数および温度はすべて 0 とする。

またここで、平面方向の領域を決める。アスファル ト層は 600cm×600cm とする。路盤層以下はそれより 20cm だけ広げた領域になる。

(b) 境界面

アスファルト層と路盤との間は接着していると仮 定し、ばね係数の値は 1,000,000MN/m³を入力する. 付着の程度から付着ありを選択してもよい。図 5.7 の ように入力する。

(c) 路盤1および2

図 5.8 のように、路盤層 30cm を 15cm と 15cm の 2 つに分割し、路盤 1 と路盤 2 を同じ材料定数とする。

^{树村}	料を選んでください	1
材料定数		
弾性係数	E (MN/m2)	300
ポアソン比	μ	0.35
密度	kg/m3	0
線膨張係数	1/°C	0
厚さと温度		
縦	(cm)	
横	(cm)	
厚さ	(cm)	15
上面温度	(°C)	0
下面温度	(°C)	0

図 5.6 表層に関するデータ入力

付着の有無を選択	して下おい 🔸
材料定数	
×方向のバネ(MN/m3)	1 000000
y方向のバネ(MN/m3)	1 000000
z方向のバネ(MN/m3)	1 00000
×方向のはがれ閾値(cm)	10
y方向のはがれ閾値(cm)	10
z方向のはがれ閾値(cm)	10

図 5.7 境界面に関するデータ入力

材	料を選んでくださし	1 🔻
相定数		
弾性係数	E (MN/m2)	300
ポアソン比	μ	0.35
密度	kg/m3	0
線膨張係数	1/°C	0
厚さと温度		
縦	(cm)	
横	(cm)	
厚さ	(cm)	15
上面温度	(°C)	0
下面温度	(°C)	0

図 5.8 路盤に関するデータ入力

(d) 路盤3および路床

図 5.9 のように、路盤 3 と路床を路床として、路盤 3 と路床を 100cm と 500cm に分け、材料定数は同じとする。

料	選んでください	-	1014	本オ料 を	2選んでくださし	•
相定数			林料定	徴		
弾性係数 E	(MN/m2)	80	3単性	主係数 E	(MN/m2)	80
ポアソン比	μ	0.35	ポア	ツン比	μ	0.35
密度	kg/m3	0	密度	ŧ	kg/m3	0
線膨張係数	1/°C	0	線雕	躬 係数	1/°C	[0
原ネン温度			「厚さと」	温度		
縦	(cm)		縦		(cm)	
横	(cm)		横		(cm)	
厚さ	(cm)	100	厚さ	Ţ	(cm)	500
上面温度	(°C)	0	上面	記温度	(°C)	0
下面温度	(°C)	0	下面	這度	(°C)	0

図 5.9 路床に関するデータ入力

(3) 荷重の設定

荷重は図 5.10 に従って、それぞれの中心位置、タイヤの幅と長さ、および荷重の大きさを入力 する。

図 5.10 荷重に関するデータ入力

(4) 要素分割などオプションの設定

ここでは要素分割についての設定を図 5.11 のような[オプション]で行う。まず、全体の x 方向 と y 方向に 20 分割するとする。すると要素の大きさは 600/20=30cm になる。そのままでは荷重付 近の要素として粗すぎるので、荷重のまわり 100×100cm の部分(270cm³70cm)をさらに要素の大 きさを半分、すなわち分割数を 2 倍とする。厚さ方向の要素分割は、表層 4 分割、路盤 1 および 2 の各層を 3 分割ずつ、路盤 3 を 3 分割、路床を 6 分割とする。その他のオプションで荷重接地 面による調整に☑がついているのは、接地面に合わせて要素分割を調整する。

(🏄 オプション類		
	表示関係		
	縮小·拡大率 %	5	
	×方向の移動量 (cm)	20	
	y方向の移動量 (cm)	20	
	z方向の移動量 (cm)	20	
甘土八朝	要素分割関係	20 細分割 270 から 370 まで 2 分割	
金个万 刮 e	y方向の分割数	20 細分割 270 から 370 まで 2 分割	再分割。
	Z方向の分割数	表層 路盤1 路盤2 路盤3 路床 4 3 3 3 6	
荷重による分割調整。	● 荷重接地面による調整	「 x着きこれして対称 「 y着きこれして対称	
	ブログラム関係 要素分割のプログラム	C:VnishiVJCIV構造解析プログラム 参照	
	構造解析のブログラム	C.¥nishi¥JCI¥構造解析ブログラ1 参照	ー プログラムの
	図形表示のプログラム	C.¥nishi¥JCI¥構造解析プログラ2 参照	フォルダ設定。
		決定	- Providence - Porto - Standardaria - 18
4			

図 5.11 要素分割に関するデータ入力

(5) 要素分割の実行

すべての項目を入力したら、まずこの設定を"ex01"という名前で保存する(図 5.12)。そのあ と、[実行]-[要素分割]で要素分割を行う(図 5.13)と、入力ファイル(ex01.pin)が作成される。要 素分割中、図 5.14 のような画面(DOS 画面)が現れる。

図 5.12 データの保存

図 5.14 要素分割の実行

もし実行時に、図 5.15 のようなメッセージが表示されたら、オプションにおいて実行ファイルの指定(図 5.11 参照)に間違があるので、確認する。構造解析や結果表示でも同様なメッセージが出たときには、同じようにオプションを確認する。

(6) 構造解析の実行

要素分割が終了したら、続いて構造解析を実行する。[実行]-[構造解析]を選択する。構造解析実行中は図 5.17 のような画面が現れる。

図 5.16 構造解析の実行

計算結果を図形表示するために、[実行]-[結果表示]を選択する。すると図 5.18 のようなグラフィック画面が現れる。ここ で、[Graph]-[Mesh]とすれば、図 5.18 のよ うに要素分割図が表示される。そのほか、 [Graph]メニューからいろいろな応答をグ ラフィカルに表示することができる。

図 5.17 構造解析の実行

図 5.18 結果の図形表示

この例題では、タイヤの間およびタイヤ中心でのたわみとひずみを求める。このように特定の 場所の数値データを取り出すときには、[Data]-[List]として図-21 のようなウインドーを表示させ て、ここに数値データを表示させる。そこから、GAMES(多層弾性理論に基づく舗装構造解析ソ フト)と比較するためのデータを取り出してまとめたものが表 5.2 である。この表から、GAMES の応答は 3DFEM よりも 10%から 50%程度大きいことがわかる。この理由は、要素分割がまだ粗 いこと、路床の深さが足りないことなどが考えられる。

図 5.19 特定の節点の数値データの抽出

		タイヤ中心					タイヤ間		
		GAMES(1)	3DFEM(2)	(1)/(2)			GAMES(1)	3DFEM(2)	(1)/(2)
表面	Uz	4.898E-02	-4.484E-04	1.09	表面	Uz	4.963E-02	-4.569E-04	1.09
	ex	-1.458E-04	-1.075E-04	1.36		ex	-3.730E-05	-8.624E-05	0.43
	ey	-2.185E-04	-1.716E-04	1.27		ey	-2.208E-04	-1.762E-04	1.25
	ez	1.201E-04	9.797E-06	12.25		ez	1.390E-04	1.398E-04	0.99
アスファルト層	Uz	4.850E-02	-4.417E-04	1.10	アスファルト層	Uz	4.974E-02	-4.590E-04	1.08
下面	ex	1.336E-04	9.118E-05	1.47	下面	ex	7.356E-05	5.422E-05	1.36
	ey	2.033E-04	1.545E-04	1.32		ey	1.989E-04	1.536E-04	1.30
	ez	-2.042E-04	-1.389E-04	1.47		ez	-1.258E-04	-9.645E-05	1.30
路床上面	Uz	3.827E-02	-3.203E-04	1.19	路床上面	Uz	3.969E-02	-3.319E-04	1.20
	ex	1.531E-04	1.233E-04	1.24		ex	1.771E-04	1.468E-04	1.21
	ey	2.091E-04	1.555E-04	1.34		ey	2.233E-04	1.640E-04	1.36
	ez	-4.935E-04	-2.619E-04	1.88		ez	-5.400E-04	-2.841E-04	1.90

表 5.2 GAMES との比較

5.2. わだち掘れ解析

わだち掘れ深さの算定式では、鉛直方向の永久ひずみを積分したものがわだち掘れ深さとなる。

すなわち、

この式において永久ひずみの算定法が必要になる。舗装では、荷重による弾性ひずみに永久ひ ずみが比例し、その比例定数が累積載荷数の関数になっているというモデルが用いられている。

すると

となり、たわみからわだち掘れ深さを計算できることになる。ここで、g(N)のいくつかの具体的なモデルを紹介する。

アスファルト混合物に対して:

ここに、*T*はアスファルト層の平均温度、*a1=*0.000699、*a2=*1.734、*a3=*0.39937である。

路盤の粒状材料や路床の土質材料に対して:

ここに、 α, β は繰返し3軸試験から求められる実験定数である。

これまでに求められている値を表 5.3 に示す。

表 5.3 材料の種類と実験定数α、β

		•
材料の種類	α	β
礫質土(路床)	0.604	0.238
砂質土、粘性土(路床)	2.35	0.170
粒状材	0.581	0.283

結局、アスファルト舗装のわだち掘れ深さは以下のように計算される。

ここに、第1項はアスファルト層、第2項は路盤、第3項は路床のわだち掘れ深さである。

例題2

例題1の舗装構造において、図の荷重が1,000,000回作用した時の荷重直下のわだち掘れ深さを 求めよ。ただし、アスファルト層の平均温度は20℃であり、路床は礫質土とする。

解答例

例題1で計算された結果を用いると、表 5.4 のようにまとめられる。

作用回数	1.00E+06		全層のδ (m)	1.43E-02			
アスフ	アルト層		路盤		路床		
温度	20	α 1	0.581	α2	0.604		
al	0.000699	β1	0.284	β2	0.238		
a2	1.734						
a3	0.399937						
⊿Uz	4.22E-04	⊿Uz1	3.06E-05	⊿Uz2	8.72E-06		
δ (m)	1.32E-02	δ (m)	8.90E-04	δ (m)	1.40E-04		

表 5.4 わだち掘れ深さの計算

5.3. 疲労ひび割れ解析

アスファルト層の疲労ひび割れは、荷重による引張ひずみの繰返しによって生ずるとされてい る。破壊繰返し回数と引張ひずみの関係は次式*により計算できる。

$$\begin{split} N_{fa} &= \beta_{a1} \cdot 10^{M} (6.167 \times 10^{-5} \cdot \varepsilon_{t}^{-3.291\beta_{a2}} \cdot E^{-0.854\beta_{a3}}) & \mbox{\vec{x}}(15) \\ \mbox{\texttt{C}}(15) \\ \mbox{\texttt{C}}(16) \\ \mbox{$\texttt{C}$$$

※舗装設計便覧(平成18年版)、pp.123-124

例題3

参

例題1の舗装構造において、図の荷重が何回作用したら疲労ひび割れが発生するか予測せよ。 ただし、 V_{b} =12.1%、 V_{v} =4%、とする。

解答例

例題1の結果である表-4より、アスファルト層下面の最大水平引張ひずみ \mathcal{E}_t は、タイヤ中心の y 方向の ϵ_y である。これより N_{fa} は図 5.20 のように計算される。

図 5.20 アスファルト舗装の疲労ひび割れ解析(例題 3)

6. コンクリート舗装の解析

6.1. 荷重応力の計算

JCA Pave3D はもともとコンクリート舗装の構造解析用に開発されたので、こちらの方の機能が 充実している。コンクリート舗装の構造解析の特徴としては、コンクリート版の大きさが有限で あり、荷重位置によって応答が異なること、目地やひび割れの不連続があること、コンクリート 版と路盤は水平方向に付着していないこと、温度応力を計算する必要があることなどがある。

JCA Pave3D はこれらの点をすべて考慮できる。

例題4

400cm×500cm 厚さ28cm のコンクリート舗装の目地縁部に大型車後軸が作用している。また後軸の中心はコンクリート版の中央にある。この時にコンクリート版に生ずる最大曲げ応力およびたわみを計算せよ。ただし、大型車後軸の配置は図 6.1 に、構造および材料定数は表 6.1 のとおりである。

	而我可供進					
コンクリート版						
厚さ(cm)	28					
弾性係数(MN/m ²)、ポアソン比	30000, 0.2					
密度(kg/cm ³)、線膨張係数(/℃)	0, 0					
深さ(cm)と温度(℃)	温度は考慮しない					
目地						
x、y、z 方向のばね係数(MN/m ³)	10, 10, 10					
それらの閾値	10、10、10					
コンクリート版と路想	盤の境界面					
x、y、z 方向のばね係数(MN/m ³)	100、100、1000000					
それらの閾値	10, 10, 10					
ダウエルバー	-					
長さ、配置間隔(cm)	70、40					
弾性係数、ばね係数(MN/m ²)	209000、400000					
中間層						
厚さ(cm)	5					
弾性係数(MN/m ²)、ポアソン比	5000, 0.35					
密度(kg/cm ³)、線膨張係数(/℃)	0, 0					
深さ(cm)と温度(℃)	温度は考慮しない					
路盤						
厚さ(cm)	20					
弾性係数(MN/m ²)、ポアソン比	300、 0.35					
密度(kg/cm ³)、線膨張係数(/℃)	0, 0					
深さ(cm)と温度(℃)	温度は考慮しない					
路床						
厚さ(cm)	400					
弾性係数(MN/m ²)、ポアソン比	80, 0.35					
密度(kg/cm ³)、線膨張係数(/℃)	0, 0					
深さ(cm)と温度(℃)	温度は考慮しない					

表 6.1 コンクリート舗装の構造

目地があるので、x方向に2枚、y方向に1枚とし、図6.2のような構造モデルとなる。

図 6.2 例題 4 の構造モデル

ここで注意すべきことは、目地および境界面におけるデータ入力である。

図 6.3 に示す目地のページにおいて、ダウエルを用いる場合には一番上のリストボックス[目地 剛性]から[ダウエル有]を選択する。また、境界面では一番上のリストボックス[付着の程度]から[付 着なし、はがれなし]を選択する。

日地剛性	付着の程度
伝達有り	付着有り
材料定数分のエル市り	材料定数 付着なし、はがれるし
×方向のタウエル悪し	×方向のバネ(MN/m3) 100
y方向のバネ(MN/m3) 10	y方向のバネ(MN/m3) 100
z方向のバネ(MN/m3) 10	z方向のバネ(MN/m3) 1000000
×方向のはがれ閾値(cm) 10	×方向のはがれ閾値(cm) 10
y方向のはがれ閾値(cm) 10	y方向のはがれ閾値(cm) 10
z方向のはがれ閾値(cm) 10	z方向のはがれ閾値(cm) 10
ダウェルバー -Y方向目地 直径(cm) 25 目地開ぎ(cm) 1 長さ(cm) 70 配置間隔(cm) 40	
X方向目地	
直径(cm) 2.5 目地開き(cm) 1	
長さ(cm) 70 配置間隔(cm) 40	
弹性係数(MN/m2) 209000	
支持係数(MN/m2) 400000	

図 6.3 目地および境界面の設定

また荷重については、大型車後軸の配置を入力していくのが面倒なので、既存のデータを用い る。図 6.4 の[荷重]ページで、[読み込み]ボタンをクリックする。すると、大型車後軸のデータが あるので、これを読み込む。このままだと位置がずれているので移動する。[移動]ボタンをクリッ クし、x 方向および y 方向の移動量を入力する。この移動量はすべてのタイヤ接地面に作用する ため、現在のタイヤ接地面を一気に移動することができる。また、複雑な荷重配置のデータを作 成したのち保存すれば、それを別の解析で読み込んで使うことができる。

図 6.4 荷重配置データの読込みと荷重の移動

以上でデータ入力が完了したので、"ex04.msh"という名前で保存し、要素分割、構造解析を順 番に実行する。計算が終わったら結果表示から[Graph]-[Contour]-[S3]によって、図 6.5 のような最 大主応力のコンターを表示させる。画面上面に最大曲げ応力の値とその位置が表示される。この 場合 x=5.00、 y=3.10、 z=-0.28 の位置に最大主応力 5.805e-01MN/m²である.これは荷重直下のコ ンクリート版下面の y 方向に生ずる曲げ応力である。このことは、[Graph]-[Contour]-[Sy]で表示し てみると、Sy の最大値と一致することからわかる。

図 6.5 最大主応力のコンター

のちの疲労度の計算に用いるので、x=5.1m における y 方向のたわみ形状と応力分布を求めてお く。[Data]-[List]で、図 6.6 のウインドーから Uz、Sx、Sy、Sz を 2 して、x=5.0、 y=Non、 z=-0.28 で[Execute]ボタンを押す。表示されたら、[Save]ボタンでリストに表示されたデータをテキストデ ータ(*.xy)として保存する。そのデータを表計算ソフトで整理したものが図 6.7、表 6.2 である。

図 6.6 数値データの保存

凶 6.7	応力分布

	表 6.2 数値	゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゚゙゙゙゙゙	覧(一部)	
уу	Uz	Sx	Sy	Sz
0. 2	-3.48E-04	7.76E-02	1.10E-02	2.84E-02
0.6	-3.74E-04	1.07E-01	7.59E-02	4.56E-02
1	-3.99E-04	1.48E-01	2.87E-01	3.86E-02
1.2	-4.09E-04	1.51E-01	5.15E-01	6.26E-02
1.3	-4.12E-04	1.72E-01	5.78E-01	7.08E-02
1.4	-4.14E-04	1.81E-01	5.04E-01	7.84E-03
1.5	-4.14E-04	1.45E-01	3.03E-01	6.52E-02
1.85	-4.13E-04	1.20E-01	5.29E-02	4.07E-02

※単位は:距離、たわみはm、応力はMN/m²

6.2. 温度応力の計算

コンクリート舗装の版厚方向の温度分布は、図 6.8 に示すように、平均成分、そり成分、内部 成分に分けることができる。コンクリートは温度変化によって体積が変化し、もしその体積変化 が、自重、路盤、目地によって拘束されると応力が発生する。これがコンクリート舗装の温度応 力である。適切な温度や境界条件を入力すれば、JCA Pave3D は 3 成分の温度応力を計算できる。

例題5

例題 4 のコンクリート舗装において、表 6.3 のようなコンクリート版の温度が計測された。1 時、8 時、14 時の目地縁部における温度応力を計算せよ。

測定点(深さ cm)	-0.5	-14	-27.5
時刻			
2011/07/20 01:00'00	23.9	25.3	26.3
2011/07/20 02:00'00	23.8	25.2	26.2
2011/07/20 03:00'00	23.7	25	26.1
2011/07/20 04:00'00	23.7	24.9	26
2011/07/20 05:00'00	23.8	24.9	25.9
2011/07/20 06:00'00	24.1	24.8	25.8
2011/07/20 07:00'00	24.7	24.9	25.7
2011/07/20 08:00'00	27.2	25.1	25.7
2011/07/20 09:00'00	29.4	25.7	25.7
2011/07/20 10:00'00	38.7	26.7	25.9
2011/07/20 11:00'00	42.5	29.2	26.2
2011/07/20 12:00'00	47.6	31.7	27
2011/07/20 13:00'00	50.9	34.3	28
2011/07/20 14:00'00	52.8	36.8	29.1
2011/07/20 15:00'00	52.5	38.7	30.3
2011/07/20 16:00'00	50	39.9	31.5
2011/07/20 17:00'00	46.5	40.3	32.4
2011/07/20 18:00'00	40.7	39.7	33
2011/07/20 19:00'00	37.5	38.4	33.3
2011/07/20 20:00'00	35	36.9	33.2
2011/07/20 21:00'00	33.3	35.5	32.8
2011/07/20 22:00'00	31.9	34.3	32.3
2011/07/20 23:00'00	30.8	33.2	31.8

表 6.3 コンクリート版で計測された深さ方向の温度分布

14時における温度分布による解析例を示す。

構造モデルを作成するが、舗装構造が例題4と同じであるので例題4で作成したモデルを修正 する。"ex04.msh"を呼び出す。[荷重]ページから[削除]ボタンをクリックして荷重を削除する。図 6.9 のような[Option]ウインドーにおいて再分割の再分割数を0とすると、要素分割が均等になる。 図 6.10 のように、[表層]ページで、密度、線膨張係数、温度分布を入力する。[境界面]ページか ら、水平方向のばね係数を1.0、鉛直方向のばね係数を1,000,000 とし、はがれを考慮するために 鉛直方向の閾値を0.001 とする。すべての入力が終わったら"ex05(.msh)"という名前で保存し、要 素分割、構造解析を実行する。

オプション和	8 8 8	<u>表層</u> 目 <mark>2</mark> 境界面 路盤1 路盤2 路盤3 路床 荷重	
表示関係		1111	
縮小・拡大率 %	5		
×方向の移動量 (cm)	20	材料定数	
y方向の移動量 (cm)	20	弾性係数 E (MN/m2 30000	
z方向の移動量 (cm)	20	ボアソン比 4 62	
要素分割関係			
×方向の分割数	20 細分割 20 から 1020 まで 0 分割	密度(SD kg/m3 2400	
y方向の分割数	20 細分割 20 から 420 まで 0 分割	線膨張係数 1/°C 1E-5	
	表層路盤1路盤2路盤3路床		付着の程度 付着なし、はがれあり ・
こうにもプライン	h h h h		
○ 荷乗補助面にとる問題	F 46214.7348 F 46234.7348	## y (cm) 400	材料定数
		横 × (cm) 500	×方向のバネ(MN/m3)
プログラム関係		厚さ z (cm) 28	y方向のバネ(MN/m3) 1
要素分割のプログラム	C. Ynishi¥JCI¥構造解析プログラ2 参照		z方向のバネ(MN/m3) 1000000
構造解析のプログラム	C.Voishi¥JCIV構造解析プログラ1 参照)深さz1(cm) -05 温度T1("C) 52.8	、方向のけがわ開体(m) ko
図形表示のプログラム	C.VeishiVJCIV構造解析プログラノ 参照	深さz2(cm) -14 温度T2(°C) 36.8	scalehoversu estimicun 10
		深さz3(cm) -275 温度T3(°C) 29.1	y万回のほかれ酸値(cm, 10
	7.70定		z方向のはがれ閾値(cm) 0.001

図 6.9 要素分割の再調整

図 6.10 コンクリート版の温度と境界条件の設定

結果表示によって、図形表示させる。図 6.11 は、[Options]-[Scale]によって変形の倍率を 200 倍とし、[Graph]-[Displacement]によって、そり変形をみたものである。目地縁部における温度応力 分布をリストにするために、[Data]-[List]にて、目地縁部の応力を取り出て保存する。それを表計 算ソフトで分布図にしたものが図 6.12 である。

6.3. 疲労度の計算

コンクリート舗装には、その供用期間中に車による荷重応力と温度応力が同時に何回も繰返し 作用する。図 6.13 に示すように、コンクリート版底面には日中引張の温度応力が発生し、そこに 車が通るたびに荷重応力が加わる。これらの応力がコンクリートの強度に比べて小さな応力であ っても数多く繰り返されると破壊し、コンクリート版にひび割れが発生する。これを疲労ひび割 れという。図 6.14 にように、応力が何回繰り返されるとコンクリート版が破壊するかを示したも のを疲労曲線という。コンクリート舗装では、温度応力と荷重応力の和を曲げ強度で除した値を 応力レベルと呼び、応力レベルと破壊に至るまでの繰返し回数の関係を表している。構造解析で 計算した荷重応力と温度応力をこの疲労曲線に当てはめて、舗装が何台の車の走行でひび割れる か(寿命)を予測する。このような予測を疲労解析という。

図 6.13 繰り返される応力

図 6.14 コンクリート舗装の疲労曲線

例題6

例題4のコンクリート舗装の疲労解析を行って、疲労度を求めよ。ただし、交通条件、温度条件および材料条件を以下の表 6.4 のとおりとする。疲労曲線は舗装標準示方書の破壊確率5%のものを用いる。

表 6.4 交通および気象条件

設計大型車交通量	30,000,000 輪
走行位置分布	中心位置:0.8、+30:0.1、-30:0.1
温度条件	表6.3で1時の温度の頻度が0.5、11時の温度が0.4、
	14 時の温度が 0.1
コンクリートの曲げ強度	4.5MN/m ²

表 6.3に対応するコンクリート版の応力をまとめると**表 6.5**のようになる。この表に基づいて、 表計算ソフトで計算した一例が図 6.15 である。

条件	頻度	曲げ応力(MN/m ²)	比率
中心位置から-30cm	0.1	2.93E-01	0.398
中心位置	0.8	7.37E-01	1.0
中心位置から+30cm	0.1	4.48E-01	0.608
1時の温度分布	0.5	0.1928(例)	
11 時の温度分布	0.4	0.3329(例)	
14 時の温度分布	0.1	1.3942	

表 6.5 曲げ応力のまとめ

図 6.15 疲労解析結果

7. バッチ処理

バッチ処理とは、MS-DOS ウィンドウ上で、コマンド形式でプログラムを1つずつ実行してい く形式で、最も融通が利く作業方式である。大量のデータ処理を行う時に効率的に作業を行うこ とができる。

バッチ処理は、次のようなステップを踏む。

(1) 解析する舗装構造のレイアウトを設定する。

- (2) 入力データを生成するために必要な情報を記述したテキストファイルを作成する。
- (3) そのテキストファイルから、pre3d.exe を使って、FEM 用の入力ファイル(*.pin)を作成する。
- (4) fem_3d.exe を使って、入力ファイルに基づいた FEM 計算を行い、計算結果を出力したファイル(*.out)を得る。
- (5) 出力ファイル(*.out)を p3d.exe で読み込んで、グラフィック表示する。あるいは、出力ファイル(*.out)の内容をテキストエディタで直接見る。

例題で具体的な手順を説明する。

例題7

図 7.1 に示す構造について、バッチ処理によって解析を行え。荷重は 5tf で、半径 15cm の円形 等分布荷重とする。FEM においては解析領域を限定しなければならない。この例においては、深 さを 3m とし、水平方向も 3m の領域を考える。周辺は水平方向固定、底面は鉛直方向および水平 方向を固定する。軸対称であることを考慮し、解析領域は4分の1の部分のみを考える。

図 7.1 3層アスファルト舗装構造

7.1. 入力ファイルの作成

FEM 入力データを生成するために、以下のようなテキストファイルを作成する。ただし、ここでの数値の単位系が工学単位系であることに注意。単位は、弾性係数について kgf/cm²、単位体積 重量については kgf/cm³とする。

このファイルを ex07.txt として保存する。MS-DOS ウィンドウにおいて、プログラム pre3d を以下のように実行して FEM 入力データを作成する。

MS-DOS ウィンドウ

pre3d –	i ex07.txt -o ex07.pin -x 2 -y 2 -z 2					
として、pre3d(.exe)を実行する。						
ここに、	以下のオプションがある。					
-i	[要素分割情報ファイル名]					
-0	[生成して出力する FEM 入力ファイル名]					
-X	[x 方向の分割の細分割数]。この例では2 なので、それぞれの分割をさらに2 分割す					
	る。すると分割は最終的に、0、10、20、35、50、75、100、200、300となる。					
-у	[y 方向の分割の細分割数]					

-z [z 方向の分割の細分割数]

この結果以下のような FEM 入力ファイル、ex07(.pin)が作成される。

```
729 3 512 337 150 [節点数] [材料数] [要素数] [境界条件を設定された節点数] [バンド幅] [材料定数の値]
5.00000e+04 3.50000e-01 0.00000e+00 1.00000e-05 0.00000e+00 0.00000e+00 ··· 0.00000e+00
8.00000e+03 3.50000e-01 0.00000e+00 1.00000e-05 0.00000e+00 0.00000e+00 ···0.00000e+00
8.00000e+02 3.50000e-01 0.00000e+00 1.00000e-05 0.00000e+00 0.00000e+00 ··· 0.00000e+00
 0.0000 0.0000 -5.0000 0.0 0.0 0.0 [節点の座標]
10.0000 0.0000 -5.0000 0.0 0.0 0.0
       .
       .
0 1 2 3 4 5 6 7 0
                                [要素に付随する節点とその要素の材料の種類]
 1 8 9 2 5 10 11 6 0
0 1 1 0
                             [境界条件を設定する節点番号と x、y、z 方向の変位の拘束条件]
 3100
                                    [荷重が作用する面の数]
                                    [関連する節点]荷重[x方向] [y方向] [z方向]
4 0.00000e+00 0.00000e+00 5.00000e+00
7 0.00000e+00 0.00000e+00 5.00000e+00
       .
```

7.2. 計算

作成した ex07(.pin)を入力データとして、MS-DOS ウィンドウにおいてプログラム fem_3d を以下のように実行する。

MS-DOS ウィンドウ

fem_3	d –f ex07	
として	、pre3d(.exe)を実行する。	
ここに	こ、以下のオプションがある。	
-f	入力ファイル名	ファイル名を指定する。拡張子は付けない。
-Z	DUZ0	
-c	x 座標、y 座標、z 座標、出	必要な節点の応答だけ知りたい場合に指定する。
	力の内容を指定する数字	0:変位
		1:ひずみ6成分
		2:応力6成分
		3::ひずみおよび応力6成分
		4: 塑性ひずみおよび応力6成分
-e	変更する材料の種類の ID、	材料定数を部分的に変更したいときに指定する。
	定数の番号、その値	
-a	なし	既存のファイルに結果を追加したい場合に指定する。指定し
		ないと結果を上書きする。
-g	なし	出力時間ごとに、グラフィックに必要な出力ファイル pin お
		よび out ファイルを出力する。
-0	出力ファイル名	-c オプションで指定した節点の応答を保存するファイル。

実行すると DOS 窓が開いて、そこに実行経過を表示する。計算には数分かかる。 計算が終了すると、ex07(.out)というファイルが作成され、そこに計算結果が格納される。

7.3. 出力ファイルの見方

計算結果は*.out というファイルはテキストファイルなので、その内容は適当なエディタで見る ことが出来る。内容は以下のとおりである。

XX	УУ	ZZ	Ux	Uy	Uz [x座標]	[y座標]	[z座標]	[x 肺酸血	[y方向变位] [z 方政位]
0.000	0.000) -5.	.000	0.000000e+00	0.000000e+0	0 -4.455	773e-02			
10.000	0.00	0 -5	.000	-2.463277e-04	1 0.000000e+	-00 -4.30	7468e-02		•	
			•							
			•							
XX	УУ	ZZ	Ex	Ey	Ez	Eyz	Ezx	Exy		[ひずみのデータ]
0.000	0.000	-5.0	00 -2	.463277e-05 -	-2.463209e-05	5 • • • 1	.483049e-0	0.00000	0e+00	
10.000	0.000	-5.	000 -	2.421357e-05	-2.430923e-0)5 • • •	4.416021e-	05 3.23184	12e-07	
			•							
			•							
			•							
XX	УУ	ZZ	Sx	Sy	Sz	Syz	Szx	Sxy [応力	のデータ]	
0.000	0.000	-5.0	00 -3	.923755e+00 -	-3.923729e+00) ••• 2	2.746386e+0	0.00000	0e+00	
10.000	0.000	-5.	000 -	4.054333e+00	-4.057876e+0	••• 00	8.177818e-	-01 5.9848	94e-03	
			•							
			•							
			•							

7.4. バッチ処理

ー連の作業コマンドをテキストエディタなどで記述し、拡張子.bat で保存しバッチファイルを 作成する。ここでは、run07(.bat)とする。そのバッチファイルを実行することで、一連の作業を一 括して実行できる。これまでの作業を記述すると、以下のバッチファイルとなる。

pre3d -i ex07.txt -o ex07.pin -x 2 -y 2 -z 2 fem_3d -f ex07

7.5. ポストプロセッサ

プログラム p3d(.exe)は、*.pin と *.out のフ アイルを読み込んでグラフィック表示する。 例題 7 の計算結果の一例を図 7.2 に示す。

図 7.2 例題 7 のグラフィック表示例

8. 空洞がある場合の解析

材料種類を要素ごとに変えることができることを利用して、路盤の下に空洞がある場合の解析 を行う。

例題8

例題7の構造で、路盤の下に高さ10cm、一辺が1mの正方形の空洞がある場合のたわみを求めて例題7と比較せよ。

8.1. 入力ファイルの作成

例題 7 の入力ファイル(ex07.txt)を修正して、以下のようなテキストファイル(ex08.txt)を作成する。ここで、弾性係数を0とすると、その要素は空洞であるとみなされる。

8.2. バッチ処理による解析の実行

このファイルを例題7と同じように処理する. すなわち以下のようなバッチファイル(run08.bat) を作成して実行する.

pre3d -i	ex08.txt	-0	ex08.pin	-x 2	-у 2	-z 2	
fem_3d -	f ex08						

8.3. 結果の整理

p3d(.exe)を起動し、ex08(.pin)を読み込む。要素分割を図 8.1 に、変形を図 8.2 に図示する。

図 8.1 空洞のある舗装の要素分割

例題7のたわみ(mm)と比較してみよう。

x 座標(m)	例題 7	例題8
0.00	-0. 446	-0.512
0.10		
0.20		
0.35		
0.50		
0.75		

表 8.1 たわみの比較 (mm)

9. 目地有り半たわみ性とポーラスコンクリートのコンポジット舗装

目地あり半たわみ性舗装とポーラスコンクリートのコンポジット舗装の解析について、例題を 用いて説明する。

例題9

図 9.1 に示すようなポーラスコンクリート舗装の目地縁部に、大型車が作用した場合の目地縁部における版下面の曲げ応力分布を計算せよ。表 9.1 に材料定数を示す。なお、半たわみの弾性係数は、温度により異なるが、ここでは8000MPaとし、線膨張係数はアスコンと同様とする。タイヤ接地面および輪荷重はそれぞれ20×20cm、24.5kNとする。

図 9.1 コンクリート舗装と荷重条件

材料	弾性係数(MPa)	ポアソン比	単位体積重量
ポーラスコンクリート	30,000	0.2	0
半たわみ	8,000	0.3	0
粒状路盤	500	0.35	0

80

表 9.1 材料定数

9.1. 入力データの作成(テキストデータの作成)

路床

2層にわたり目地がある場合には、JCA Pave3Dから直接データを作成することができない。そこで、2層を1層としてデータを作成(図9.1)した上で、出来上がったメッシュ作成用のデータ(テキストファイルを)修正する事で入力データを作成する。

0.35

0

図 9.1 に示す入力値、図 9.2 に示すオプションの分割数を設定した後、ファイル名を ex09 として保存する。

	× 1	NR .
		×185357 3265411
		材料定数 2004年5月
		理性的效 E (MN/m2) 30000
		ポアソン比 µ 02
,+	1	密度(SI) kg/cm3 0
		線驗强係数 1/°C [1E-5
×		厚さと温度
		税 y (cm) 400
	•	横 × (cm) 1000
		/厚さ z (cm) 20
I FÎ		深さz1(cm) 0 温度T1(°C)0
x		深さz2(cm) 0 温度T2("C) 0
		深さz3(cm) 0 温度T3(°C) 0
		表示 拡大 縮小
	•	
		Default Option Main Menu
目地 境界面 路盤1 路盤2 路盤3 路床 荷重	表層 目地 浅界面 路盤1 路盤2 路盤3 路床 夜	動產 表層 目地 境界面 路盤1 路盤2 路盤3 路床 荷)
目地剛性	付着の程度	- 4191 VANFIMETALER
1		Parsumacora
材料定数	材料定数	材料定数
×方向のバネ(MN/m3) 100000	×方向のバネ係数 10	弹性係数 E (MN/m2) 500
y方向のバネ(MN/m3) 100000	y方向のバネ係数 10	ボアソン比 µ 1035
z方向のバネ(MN/m3) 100000	z方向のバネ係数 100000	wggg kg/cm3 lo
×方向のはがれ閾値(cm) 10	×方向のはがれ閾値 10	- Kg/cm3 jo
y方向のはがれ閾値(cm) 10	v方向のはがわ開催 Fo	
z方向のはがれ閾値(cm) h0	また向のはがわ開催 しの	厚さと温度
Real	I I I I I I I I I I I I I I I I I I I	縦 (cm)
Y方向目地		横 (cm)
直径(cm) 0 目地開き(cm) 0		厚さ (cm) 30
長さ(cm) 0 配置間隔(cm) 0		上面沒度 (*2) 6
X方向目地		下面温度(20)に
直径(cm) 0 目地関連(cm) 0		1 uu/au/sc (C) p
長さ(cm) 0 配置間隔(cm) 0		
弹性係数(MN/m2) 0		
支持係数(MN/m2) 0		
	_	2
地 境界面 路盤 路盤2 路盤3 路床 荷重	表層 目地 境界面 路盤1 路盤2 路盤 路床 青	重 表層 目地 境界面 路盤1 路盤2 路盤3 路床
(± •	1111 ±	
- <u> </u>		20cm
定数	材料定数	→ ← X Load WX
性係数 E (MN/m2) 80	弾性係数 E (MN/m2) 80	-
アソン比 µ 1035	ボアソン比 μ 635	Concrete Slab
	strate	
度 kg/cm3 [0	密度 kg/cm3 0	X Zount +
	線膨張係数 1/°C 1E-5	ID X Y WX WY P(k
膨張係数 1/℃ 1E-5		1 1010 190 20 20 243
能張係数 1/℃ 1E-5		2 1010 220 20 20 24
能强係数 1/℃ [1E-5	厚さと温度	13 11010 320 20 20 24
骸張係数 1/℃ 1E-5 温度 (cm)	<i>輝さと温度</i> 縦 (cm)	4 1010 350 20 20 24
截張係数 1/°C 1E-5 温度 (cm) (cm)	<i>障さと温度</i> 縦 (cm) 横 (cm)	4 1010 350 20 20 24 5 0 0 0 0 0
製蛋係数 1/℃ 1E-5 温度 (cm) (cm) さ (cm) 50	章32温度 縦 (cm) 横 (cm) 厚さ (cm) 200	4 1010 350 20 20 243 5 0
徹子係数 1/°C 1E-5 (cm) (cm) さ (cm) 方の 面温度 (°C) 0	単32温度 縦 (cm) 横 (cm) 厚さ (cm) 上面温度 (*C) [0	4 1010 350 20 20 24 5 0 0 0 0 0 0 6 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
徹子係数 1/°C 1E-5 温度 (cm) (cm) (cm) さ (cm) 方の 万の 面温度 (°C) の 0	様では 縦 (cm) 横 (cm) 厚さ (cm) 上面温度 (°C) [0 下面温度 (°C) [0	4 1010 350 20 20 24 5 0 0 0 0 0 0 6 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
撤張係数 1/°C 1E-5 温度 (cm) (cm) (cm) さ (cm) 方の 万の 面温度 (°C) の 0	様では 縦 (cm) 横 (cm) 厚さ (cm) 厚さ (cm) 上面温度 (°C) [0 下面温度 (°C) [0	4 1010 350 20 20 24 5 0 0 0 0 0 6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0 9 0 0 0 0 0 100 0 0 0 0 0
撤張係数 1/℃ 1E-5 温度 (cm) (cm) さ (cm) 50 面温度 (°C) 0 面温度 (°C) 0 0 0 0 0 0 0 0 0	様では 縦 (cm) 横 (cm) 厚さ (cm) 厚さ (cm) 上面温度 (°C) [0 下面温度 (°C) [0	4 1010 350 20 20 24 5 0 0 0 0 0 6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0 9 0 0 0 0 0 100 0 0 0 0 0 110 0 0 0 0 0

図 9.1 例題 9 のデータ作成画面

作成された ex09(.txt)ファイルを、テキス トエディタで開き修正する。修正内容は以 下のとおりである。

- ① 1層目を2分割する為、層の数を6から 7にする。
- ② 1層目のデータを、2層目の前にコピー ペースト。
- ③ 1 層目の z 方向の分割を、0、-1.667、 -3.3333、-5とする。
- ④ 2層目のz方向の分割を、-5.0、-10.0、 -15.0 とする。
- ⑤ 2 層目の材料定数の弾性係数を 81633(kgf/cm²)、ポアソン比を 0.35 とす 図 9.2 要素分割数の設定 る。

修正前後の ex09(.txt)ファイルを示す。

元の ex09(. txt) ファイル

and a second		_					
縮小·拡大率 %	þ						
×方向の移動量 (cm)	20						
y方向の移動量 (cm)	20						
z方向の移動量 (cm)	20						
要素分割関係					-	_	-
×方向の分割数	20	細分割 20	から	2020	まで	1	分害
y方向の分割数	10	細分割 20	から	420	まで	1	分害
	表層	路粮1	路盤2	路服3	20	床	
Z方向の分割数	p	2	2	12	12		
その他オブジョン ▽ 荷重接地面による調整	F×193	化で対称 「う	輸に対して対	聊			
ブログラム関係							
要素分割のプログラム	pre3d.e	×e		参照			
構造解析のプログラム	fern_3d	exe		李熙			
図形表示のプログラム	p3d.exe	i.,		参照		_	
					Terretere		-1

64	層の数、荷重の数
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 1 層目(ポーラスコンクリート層) x 方向の分割座標 y 方向の分割座標 z 方向の分割座標 x 方向の材料種別 y 方向の材料種別 材料定数 0 材料定数 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 層目(境界面層) x 方向の分割座標 y 方向の分割座標 z 方向の分割座標(厚さが 0.3cm に注意) x 方向の材料種別 y 方向の材料種別 材料定数 0(最後の 1.1 は境界面要素を示す)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 層目(粒状路盤) ここから、前後左右に 20cm ずつ広がっている。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 層目(路床)
	5 層目(路床) 6 層目(路床) ※Z 方向の分割座標を除き、4 層目と同じ。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	タイヤの左下の座標(x、y)、右上の座標(x、 y)およびタイヤ圧、ps、 pt、 pn

修正後の ex09(. txt) ファイル

· ·	「自い致き」う追くす。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 層目(ポーラスコンクリート層) ③z 方向の分割座標を修正 1 層目の版厚 5cm を、3 分割した座標
$\begin{array}{c} 42\ 16\ 3\ 2\\ 20.0 69.0 118.0 167.0 216.0 265.0 314.0 363.0 \cdots 2020.0 \\ 20.0 60.0 100.0 140.0 180.0 200.0 210.0 220.0 \cdots 420.0 \\ -5.0 -10.0 -15.0 -20.0 \\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ $	2 層目(半たわみ層) ②1 層目をコピーして貼り付ける。 ④z 方向の分割座標を修正 1 層目の版厚 15cm を 3 分割し、起点を-5.0 とし た座標 ⑤弾性係数とポアソン比を、アスファルト舗装 の物性値に変更。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 層目(元 2 層目 ; 境界層) これ以降は修正なし。

9.2. バッチ処理による解析の実行

以下のようなバッチファイル(run09.bat)を作成して、要素分割、FEM 計算を行う。

pre3d -i ex09.txt -o ex09.pin fem_3d -f ex09

9.3. 解析結果

p3d(.exe)によって ex09(.pin)を読み込んで図形表示する。

図 9.3 例題 9 の解析結果一例

10. オーバーレイ層に目地を設けない場合

オーバーレイ層には目地を設けない場合が多い。そのような場合の解析を行う。

例題10

例題9の構造を用いて、図10.1に示すようなオーバーレイ層に目地を設けない場合の構造解析 を行う。

ポーラスコンクリート:5cm	0	
半たわみ:15cm		
粒状路盤: 30cm		
路床:300cm		

図 10.1 オーバーレイ層に目地を設けないコンポジット舗装

10.1. 入力データの作成

例題9の入力ファイル ex09(.txt)を以下のように修正し、ex10(.txt)として保存する。修正内容の要 点は、ポーラスコンクリート層の目地をなくすために①要素分割を変更することと、②ポーラス コンクリート層と半たわみ層の間に境界層を挿入することである。

84	層の数を7から8に修正
$\begin{array}{c} 41 \ 16 \ 3 \ 1 \\ 20.0 69.0 118.0 \cdot \cdot 1000.0 \ 1020.1 \ 1070.0 \cdot \cdot 2020.0 \\ 20.0 60.0 100.0 140.0 180.0 200.0 210.0 \cdot \cdot 420.0 \\ 0.0 -1.667 -3.3333 -5.0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	1 層目(ポーラスコンクリート層) ①x 方向の分割数を1つ減らす。 x 方向の分割座標、[1020.0 1020.2]の2座標を、 中間点[1020.1]の1座標にする。 目地に相当する材料種別1を削除する. ←目地材の物性値を削除
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 層目(境界層) 元 3 層目の境界層をコピーして貼り付ける。 境界層の厚みを 0.3cm とする。 オーバーレイ層と半たわみ層は接着されている ものとして、ばね係数を大きな値にする。 付着させるために、xyz 方向を 10204.082031 に 設定。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 層目 (元2層目;半たわみ層) 半たわみ層の表面の座標を境界層の底面の座標 に合わせる.

10.2. バッチ処理による解析の実行

以下のようなバッチファイル(run10.bat)を作成して、計算を実行する。

pre3d -I ex10.txt -o ex10.pin fem_3d -f ex10

10.3. 解析結果

p3d(.exe)を実行し、ex10(.pin)を読み込んで図形表示する。例題9の結果と、たわみの比較してみよう。[データ]-[リスト]からx方向のUzの分布を取り出してみる。

Numerical Data Form	×
xx Uz	Selections
0.2000 6.94505e-07	Key Select
0.6900 9.93469e-07	
1.1800 1.35646e-06	× 12
1.6700 1.85102e-06	
2.1600 2.54640e-06	Y [1]3.1
2.6500 3.50995e-06	
3.1400 4.79907e-06	Z 0 0.0
3.6300 6.44229e-06	
4.1200 8.40557e-06	$\Delta = \overline{10}$
4.6100 1.05500e-05	
5.1000 1.25491e-05	B = 0
5.5900 1.37924e-05	=
6.0800 1.32485e-05	Tems
6.5700 9.28634e-06	Atoms
7.0600 -5.12399e-07	T Ux T Uy 🔽 Uz
7.5500 -1.95111e-05	
8.0400 -5.20421e-05	Sx Sy Sz
8.5300 -1.02993e-04	
9.0200 -1.76278e-04	I over I own I only
9.5100 -2.71944e-04	Ex Ey Ez
10.0000 -3.82914e-04	
10.2000 -4.26524e-04	1 Lyz I LEA I LAY
10.2020 -3.96575e-04	S1 52 53
10.7000 -2.77633e-04	
11.2000 -1.76477e-04	
11.7000 -1.00517e-04	
12.2000 -4.880138-05	
12.7000 -1.649290-05	
13.2000 1.656/98-06	Execute Save
13.7000 1.031246-05	
14.2000 1.420108-05	Close
14.7000 1.421398-05	- Close
15.2000 1.25953e-05	•

図 10.2 オーバーレイ層に目地がある場合のたわみ形状(例題 9)

xx Uz	Selections
0.2000 -1.87864e-06	Kev Select
0.6900 -1.58760e-06	
1.1800 -1.24125e-06	X 2
1.6700 -7.76436e-07	No Personal Processor
2.1600 -1.31963e-07	Y [1]3.1
2.6500 7.46234e-07	
3.1400 1.89451e-06	Z 0 0.0
3.6300 3.31190e-06	
4.1200 4.92707e-06	$\Delta = \overline{10}$
4.6100 6.55397e-06	
5.1000 7.82739e-06	B = 0
5.5900 B.11561e-06	-
6.0800 6.41924e-06	Itomo
6.5700 1.25765e-06	10ms
7.0600 -9.42003e-06	T Ux T Uy 🔽 Uz
7.5500 -2.82671e-05	
8.0400 -5.83612e-05	Sx Sy Sz
8.5300 -1.02379e-04	Γ Svz Γ Szx Γ Sxy
9.0200 -1.60949e-04	
9.5100 -2.32603e-04	Ex Ey Ez
0.0000 -3.06754e-04	
0.2010 -3.07346e-04	
J./UUU -2.2864/8-04	T S1 T S2 T S3
1.2000 -1.541008-04	
2,2000 - 9,300410-05	1 1 1 1 1
7000 -2 462278-05	
2000 -7 08488-06	
3 7000 2 588564-06	[Sector] Sector
4 2000 7 034938-06	Execute Save
4 7000 8 260518-06	
5,2000 7,686628-06	Close
5 7000 6 265360-06	*

図 10.3 オーバーレイ層に目地ない場合のたわみ形状

11. 目地有りコンクリート舗装をアスファルト層でオーバーレイした場合のリフレク ションクラックの検討

目地ありコンクリート舗装の上にアスファルト舗装を施したコンポジット舗装の構造解析を行 う。この際、アスファルト舗装には目地を設けなため、リフレクションクラックが懸念される。 その解析をおこなうためのモデルを作成する。

例題 11

図 11.1 に示すようなコンポジット舗装の目地縁部に大型車軸重が作用した場合の目地縁部に おけるコンクリート版下面の曲げ応力分布を計算せよ。また、同様にして枕版がない場合の曲げ 応力分布も計算せよ。荷重は軸重 98kN であり、1 輪あたり 24.5kN となる。

なお、図 11.2 に膨張目地の詳細を示す。

図 11.1 舗装構成および荷重載荷位置(単位:mm)

図 11.2 膨張目地詳細図

11.1. 入力データの作成

以下のコンクリート舗装版の入力データを、JCA Pave3D を用いて作成する。そのあと、txt ファイルを修正してオーバーレイ層を追加する。さらに枕版を追加する。

コンクリート舗装版以下は図 11.3 のような層構成とする。後で枕版を追加することを考え、路 床は 2 分割とする。図 11.4 に示すようにデータを作成したら、ファイル名を ex11 として保存す る。作成された ex11(.txt)ファイルを修正する。

路床層その2(190cm)-

図 11.3 オーバーレイ構造

図 11.4 例題 11 のデータ作成画面

作成した ex11(.txt)をテキストエディタで開 くと、以下のようなテキストファイルになって いる。なお、オプション類の「要素分割関係」 は図 11.5 に示すように設定している。

オプション類						c	
表示関係	011002000000						
縮小·拡大率 %	5						
×方向の移動量 (cm)	20						
y方向の移動量 (cm)	20						
z方向の移動量 (cm)	20	-					
要素分割関係	60						- 1.444
×/方回0/2方書]]欧	120	#田分割 [20	פית	12020	# C	h	分割
y方向の分割数	10	細分割 20	から	540	まで	1	分割
Z方向の分割数	<u>表層</u> 3	路盤1 3	<u>路盤2</u> 3	路盤3 3	<u>2</u> 2	床	
その他オプション	- S.	-	20 A	-			
▶ 荷重接地面による問題	∏ ×∎0:¢	北て対称 「	9軸に対して対	称			
ブログラム間係							
要素分割のプログラム	pre3d.e	же		参照		_	
雄浩敏振のゴロガラル	fem_3d	exe	-	参照		_	_
相互が利用シンロノンム							
図形表示のプログラム	p3d.exe			参照			

図 11.5 要素分割関係の設定

元の ex11 (. txt) ファイル

68	
$\begin{array}{c} 44\ 18\ 3\ 2\\ 20.0 \\ 20.0 \\ 65.0 \\ 110.0 \\ 155.0 \\ 167.5 \\ 180.0 \\ 190.0 \\ 215.0 \\ 215.0 \\ 247.5 \\ \cdot \cdot \cdot 540.0 \\ $	1 層目 (コンクリート舗装版層)
44 18 1 1 20.0 68.3 116.6 164.8 213.1 261.4 309.7 357.9 406.2 • • 2020.0 20.0 65.0 110.0 155.0 167.5 180.0 190.0 215.0 247.5 • • 540.0 -22.0 -22.3 0	2 層目 (境界面)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 層目 (セメント安定処理層)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 層目 (路床層その1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 層目(路床層その2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 層目(路床層その3)

889.00	155.00	914.00	180.00 0 0	4.0000	荷重データ
889.00	190.00	914.00	215.00 0 0	4.0000	(8 個のタイヤ)
889.00	345.00	914.00	370.00 0 0	4.0000	
889.00	380.00	914.00	405.00 0 0	4.0000	
995.00	155.00	1020.00	180.00 0 0	4.0000	
995.00	190.00	1020.00	215.00 0 0	4.0000	
995.00	345.00	1020.00	370.00 0 0	4.0000	
995.00	380.00	1020.00	405.00 0 0	4.0000	

このテキストファイルに、以下の修正を行う。

- ② 1 層目(コンクリート舗装版層)と2 層目(境界層)をコピーし、コンクリート舗装版層の上に貼り付ける。
- ③ 貼り付けたコンクリート舗装版層について、アスファルトオーバーレイ層とするために、
 目地を削除する。具体的には、分割数の修正と目地部の分割座標の削除である。
- ④ アスファルトオーバーレイ層のz方向の分割座標を、8.3 5.633 2.9667 0.3 とする。
- ⑤ アスファルトオーバーレイ層の材料数を1つ減らし、目地部の材料定数を削除する。また、 アスファルトオーバーレイ層の弾性係数とポアソン比を、50000kgf/cm³と0.35とする。
- ⑥ 貼り付けた境界面の z 方向の分割座標を、0.3、0.0 とする。
- ⑦ 貼り付けた境界面の水平方向のばね係数の値を大きくする。これにより、アスファルトオ ーバーレイ層とコンクリート舗装版層が接着される。
- ⑧ セメント安定処理層の x=840 付近から x=1170 付近の部分を枕版とする。具体的には、材料 種類数を増やし、枕版の材料定数を設定、該当の要素部分の材料種類を枕版の材料番号に 指定する。

枕版の材料定数は、弾性係数とポアソン比をそれぞれ 100000kgf/cm² と 0.2 とし、この材料 定数を 37 から 48 番目までの要素に設定する。

⑨ 路床層その1についても、⑧と同様の修正を行う。

修正後の ex11(. txt) ファイル

88	①層数の変更
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 ②元1 層目(コンクリート 舗装版層)をコピー ③目地部の座標を削除 ④z 方向の分割座標を修正 ③目地部の修正
50000.0 0.350000 0.000000 0.000010 0 0.000000 0.000000 0.000000 0 0 0	⑤材料数を 1 つ削除。物性 値を変更
44 18 1 20.0 68.3 116.6 164.8 213.1 261.4 309.7 357.9 406.2 • • 2020.0 20.0 65.0 110.0 155.0 167.5 180.0 190.0 215.0 247.5 • • 540.0 0.3 0.0	②元 2 層目(境界面層)を コピー
000000000000000000000000000000000000000	
102040.812500 102040.812500 102040.812500 10.000000 10.000000 10.000000 0 0 0 0	 ⑦水平方向のばね係数を大きくする 3 層目(元1層目) コンクリート結共防層
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	そのまま
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
44 18 1 1 20.0 68.3 116.6 164.8 213.1 261.4 309.7 357.9 406.2 · · · 2020.0 20.0 65.0 110.0 155.0 167.5 180.0 190.0 215.0 247.5 280.0 · · · 540.0 -22.0 -22.3	4 層目(元 2 層目) 境界面層 そのまま
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 留目 (元3 留日) セメント安定処理層 ⑧ 枕版を追加するため材料 種類数を修正 ⑧ 当該要素の材料番号を修 正
30612.000000 0.200000 0.000000 0.000010 0 0 0.000000 0.000000 0 0 0	ー ⑧枕版の材料定数を追加
47 22 3 2 0.0 10.0 20.0 68.3 116.6 164.8 213.1 261.4 309.7 · · · 2040.0 0.0 10.0 20.0 65.0 110.0 155.0 167.5 180.0 190.0 · · 560.0 -37.3 -40.6 -44.0 -47.3	6 層目(元4層目) 路床層その1 5 層目と同じ修正
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $	
	以下はそのまま。 省略

11.2. バッチ処理による解析の実行

以下のようなバッチファイル(run11.bat)を作成して、計算を実行する。

pre3d -I ex11.txt -o ex11.pin fem_3d -f ex11

